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Abstract

The potential of three advanced optical concepts in chalcopyrite-based solar cells is investigated by means of simulations with
realistic optical and electrical parameters of state-of-the-art CGS and CIGS cells. First, a monolithically stacked tandem
CGS/CIGS structure is analysed, achieving efficiencies up to 20.3 % under standard test conditions. Then, in order to reduce the
effects of the parasitic sub-bandgap absorption, a wavelength-selective intermediate reflector is incorporated in the tandem,
leading to efficiencies up to 20.8 %. Finally, the concept of spectrum splitting is tested in a hybrid four-terminal configuration of
dislocated CGS and CIGS cells, and efficiencies up to 22.5 % are simulated. To indicate further possible improvements, all three
concepts are also tested in optically and electrically idealised CGS/CIGS structures, indicating the potential of efficiencies up to
28 %.
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1. Introduction

Low-cost polycrystalline chalcopyrite materials such as Cu(Iny,Ga,4)Se, — CIGS have been recognised for the
potential to easily alter their bandgap, enabling better solar spectrum utilization in solar cell applications. By
changing the ratio of In/Ga concentrations, bandgaps from 1.02 eV for CulnSe, (CIS) up to 1.68 eV for CuGaSe,
(CGS) can be achieved [1]. This bandgap alteration ability makes them perfect candidates not only for thin-film
single-junction devices but also for tandem and other advanced optical concepts of solar cells. Tandems generally
consist of the top high-bandgap cell, which absorbs the short-wavelength (high-energy) part of the spectrum, and the
bottom low-bandgap cell absorbing the rest. Thus, a much more efficient harvesting of the solar spectrum can be
achieved since the photo-generated carriers normally carry less excess energy. Under standard AM1.5 illumination
conditions, the optimal top and bottom cell bandgaps of 1.71 eV and 1.14 eV have been determined [2],
respectively, which is almost ideally within the range of the CIGS bandgaps.

In this work, the potential of three advanced concepts in the design of chalcopyrite-based solar cells, aiming for
higher conversion efficiency, is investigated by means of optical and electrical modelling. First, the potential of
monolithically stacked CGS top cell and CIGS bottom cell in a tandem configuration is investigated. The effects of
the top CGS thickness and the bottom CIGS bandgap are analysed, and their optimal values for the highest
conversion efficiency are determined. Then, in order to boost the performance of the tandem, a wavelength-selective
intermediate reflector (WSIR) is inserted between the top and the bottom cell to eliminate the effects of the sub-
bandgap absorption in the CGS cell. As the third case, the concept of spectrum splitting applied in a hybrid four-
terminal configuration of CGS and CIGS cells is investigated. Primarily, realistic optical and electrical parameters
of current state-of-the-art CGS and CIGS cells are used in the simulations. However, to indicate the potential for
further improvements of the concepts, the simulations are also carried out for the idealised parameters. The results
of the calculated conversion efficiencies indicate that by applying the advanced concepts, efficiencies up to 23 %
can be achieved for the case of realistic parameters of the cells, and more than 28 % for the case of optically and
electrically improved CGS and CIGS cells.

2. Simulation method

The one-dimensional semi-coherent optical simulator SunShine [3] is employed to determine the external
quantum efficiency (QF) and the short-circuit current density (Jsc) of the investigated solar cells. For this
determination, a detailed optical analysis combined with a simplified (but justified) electrical analysis is used. As the
first step, the external QF is equalised to the calculated absorptance in the CGS or CIGS layer. Then, the effects of
the non-ideal charge carrier extraction especially in the CGS absorber are included following the QF data of the
state-of-the-art CGS and CIGS cells. The Jgc is calculated from such determined QF by applying the AM1.5 solar
spectrum. In the simulations, realistic complex refractive indices of the layers (including the sub-bandgap absorption
in CGS and CIGS layers [4] and the free carrier absorption in transparent conductive oxide — TCO layers) are taken
into account.

The conversion efficiencies (Eff) of the investigated structures are determined from the simulated Jsc by applying
the standard diode model and then calculating the open-circuit voltage (Voc) and the fill factor (FF) from the J-V
characteristics. For these calculations, realistic electrical parameters of the chalcopyrite absorbers (i.e. the bandgap
(Eg), the saturation current density (Jy), and the diode ideality factor (4)) are assumed, which are extracted from the
latest reported state-of-the-art cells: (i) CGS: Eg = 1.68 eV, J, = 7-107 mA/em?®, 4 = 2.1 [5]; and (ii) CIGS: Eg =
1.18 eV, Jy =2.1-10° mA/cm?, A = 1.14 [6]. The saturation current density of CIGS absorbers with bandgaps other
than 1.18 eV is extrapolated according to Eq. 1 [4].
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3. Results and discussion

The potential of three advanced concepts of chalcopyrite-based solar cells is investigated by means of simulations:
(a) the monolithically stacked CGS/CIGS tandem structure (Fig. 1a),
(b) the CGS/CIGS tandem enhanced with a WSIR (Fig. 1b),
(c) the concept of spectrum splitting applied in a hybrid four-terminal configuration of dislocated CGS and CIGS
solar cells (Fig. 1c).
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Figure 1: The analysed concepts of chalcopyrite-based solar cells: (a) a monolithically stacked tandem, (b) a
monolithically stacked tandem with a WSIR, and (c) the concept of spectrum splitting applied in a hybrid four-
terminal configuration of dislocated cells.

3.1. Monolithically stacked CGS/CIGS tandem solar cells

In a monolithically stacked CGS/CIGS tandem, the top CGS and the bottom CIGS cells are optically and
electrically connected with a layer of SnO,:F transparent conductive oxide (TCO). A thin Mo layer between the
CGS and the SnO,:F for improving the ohmic contact of the interface was not considered in the simulations. The
transparent front contact is realised as a combination of the intrinsic ZnO and n-doped ZnO:Al TCO. In order to
reduce the reflection losses, a thin layer of MgF, antireflective coating is deposited on top of the ZnO:Al TCO layer.
The thicknesses of the individual layers are given in Fig. la.

The bandgap of the top CGS absorber was set to 1.68 eV, which is close to the theoretically optimal value for the
tandems [2]. Two parameters were varied and optimised in the analysis: (i) the thickness of the top CGS absorber
(dcas), and (ii) the bandgap of the bottom CIGS absorber (Eg, cigs). The effects of the dcgs on the OF are presented
in Fig. 2 for two selected thicknesses and for Eg cigs = 1.15 eV. For the case of a thick CGS absorber (1700 nm) the
Jsc.cas = 17.5 mA/cm? is determined for the top cell. However, due to the high dcgs, the pronounced parasitic sub-
bandgap absorption in the CGS layer severely hinders the transparency of the top cell in the long-wavelength region
(4 > 740 nm). Thus, the Jsc in the bottom CIGS cell is limited (Jsc, cigs = 14.1 mA/cmZ). The simulation results
show that in this case, 5.1 mA/cm® of the potential Jsc is lost due to the sub-bandgap absorption in the top CGS
absorber. Therefore, in order to assure better current matching, the dcgs needs to be optimised. The optimisation
results indicate that if the dcgs is reduced to 1050 nm, a lower Jsc, cgs = 16.4 mA/cm?® and a less pronounced sub-
bandgap absorption are achieved. In this case, only 3.3 mA/cm® of the potential Jsc is lost due to the sub-bandgap
absorption in the top CGS cell, while the Jsc, cigs is increased to 16.3 mA/cm?. Comparing the Jsc, cgs and Jsc, cigs, it
can be observed that now the top and the bottom cell are current-matched, which is of primary importance for
efficient tandems. Thus, the thickness dcgs of 1050 nm was indicated as the optimal value for this tandem.

The bandgap of the bottom CIGS absorber, on the other hand, affects both the Jsc and the V¢ of the cell,
according to the diode model. Higher Eg cigs results in a higher Voc, but lower Jsc, cigs. Therefore, since both the
dcgs and the E cigs affect the performance of the tandem, they need to be optimised simultaneously, as presented in
the following.
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Figure 2: The simulated QF of CGS/CIGS tandems Figure 3: The calculated conversion efficiencies of
with different top CGS absorber thicknesses. The CGS/CIGS tandems for different dcgs / Eg, cigs
effects of thinning down the CGS absorber are combinations. The maximal efficiency of 20.3 % can
indicated by arrows. be achieved, considering the realistic state-of-the-art

parameters for CGS and CIGS cell.

In order to determine the optimal values of the dcgs and Eg, cigs, rendering the highest Eff of the tandem cell, an
extensive set of simulations was carried out in which both parameters were varied from 100 — 2500 nm and from
1.00 — 1.25 eV, respectively. The results presented in Fig. 3 indicate that by using the realistic optical and electrical
parameters of the CGS and the CIGS cell, the maximal tandem efficiency of 20.3 % can be achieved (see also Table
1). Furthermore, it can also be observed that the area with high efficiencies (Eff'> 20 %) is localised tightly around
the optimal values, which are dcgs =~ 1050 nm and Eg_cigs = 1.15 eV.

To indicate potential further improvements in the tandem performance, an optically and electrically idealised
CGS cell was assumed in the CGS/CIGS tandem. In particular, two cases of idealisation were assumed: first, the
sub-bandgap absorption in the CGS absorber was excluded, and second, the electrical parameters of the state-of-the-
art CIGS cell were employed to the CGS cell. The results that are summarised in Table 1 show that in the case of an
idealised CGS cell, a much higher conversion efficiency of the tandem (Eff = 27.5 %) could be achieved. Thus,
improving the electrical and optical performance of the top CGS cell presents a crucial step for highly efficient
tandems. Along with this, advanced concepts that minimise the effects of the sub-bandgap absorption need to be
developed. Two of them are analysed in the following.



Table 1: Maximal achieved conversion efficiencies and optimal parameters for different advanced concepts.

Simulations based on
realistic parameters

Simulations based on
idealised CGS
parameters

d(;(‘,s =1050 nm

dCGS =2500 nm

Monolithic PASICIGS | g s =115 eV Eg,cias=1.10eV
Eff =20.3 % Eff=275%
dcgs = 800 nm dcgs = 2500 nm

Monolithic CGS/CIGS Eg.cigs = 1.15eV E. cics=1.10 eV

tandem with a WSIR Js = 680 nm Js =710 nm
Eff=20.8 % Eff=28.0 %

The concept of

spectrum splitting and
dislocated cells

dcgs = 2500 nm
Eg cis=1.10eV
As =710 nm
Eff =22.5%

degs = 2500 nm

Eg cigs=1.10eV
As =720 nm
Eff=28.1 %

3.2. CGS/CIGS tandem solar cells with a wavelength-selective intermediate reflector (WSIR)

In order to reduce the limiting effects of the realistic sub-bandgap absorption in the CGS cell, we introduce a
wavelength-selective intermediate reflector (WSIR), which is inserted between the SnO,:F TCO and the top CGS
cell of the CGS/CIGS tandem (Fig. 1b). The function of the WSIR is to: (i) efficiently reflect the short-wavelength
(high-energy) part of the spectrum back into the top CGS cell, and (ii) efficiently transmit the long-wavelength (low-
energy) part into the bottom CIGS cell. Due to the enhanced reflectivity properties in the short-wavelength region
and thus an increased absorption in the top cell, the CGS absorber can be thinner and therefore the optical losses
related to the sub-bandgap absorption can be minimised. The desired reflectance characteristics R(4) of the WSIR
(see inset in Fig. 1b) can be realised, for example, by photonic-crystal-like structures in the role of distributed Bragg
reflectors, which also need to be conductive in this case [7]. In the reflectance characteristics, As represents the
threshold wavelength of the WSIR. In our simulations, an ideal WSIR was applied (R =1 for A < Ag; T=1 for A >
As).

The effects of the WSIR on the QF of the CGS/CIGS tandem are presented in Fig. 4. In the region of 4 =500 —
700 nm, the WSIR (45 = 680 nm) significantly enhances the QF of the top CGS cell (dcgs = 800 nm) compared to
the tandem without the WSIR. Furthermore, if the optical combination CGS/WSIR/TCO renders lower reflectance
than the CGS/TCO interface for 4 > Ag, the OF of the bottom CIGS cell can be enhanced as well as seen in the
figure.

The optimal dcgs and Eg, cigs of the tandem with the optimal WSIR (As = 680 nm) can be determined from the
mapping presented in Fig. 5. Here, the highest Eff of 20.8 % is obtained for the cells with the realistic optical and
electrical parameters. Comparing to Fig. 3, it can be observed that the area with high tandem efficiencies is now
much wider, which allows for greater freedom in the design with respect to dcgs and Eg, cigs. The optimal dcgs and
EG. cigs are 800 nm and 1.15 eV, respectively. Furthermore, as a result of the enhanced active bandgap absorption in
the CGS layer, the optimal dcgs is shifted towards lower values (= 800 nm), which would reflect in a lower material
consumption. Finally, the optimal threshold wavelength of the WSIR must also be carefully selected to assure the
optimal distribution of the spectrum between the top and the bottom cell, thus assuring a high level of Jsc matching
and high Eff of the cell. In our case, the optimal As = 680 nm was determined.
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The implementation of a WSIR was also tested for the case of a tandem with an idealised CGS cell, where the
highest efficiency of 28.0 % was indicated for dcgs = 2500 nm and Eg cigs = 1.10 eV. (see Table 1).

3.3. The concept of spectrum splitting in a hybrid configuration of dislocated CGS and CIGS solar cells

The negative effects of the sub-bangap absorption can be completely eliminated by the concept of spectrum
splitting (Fig. 1c). Instead of the vertical monolithic integration, the CGS and CIGS cells are constructed separately
and connected in a hybrid four-terminal configuration. A wavelength-selective spectrum splitter (could be realised
with dichroic mirrors [8]) with the characteristic split point Ag is employed to physically split the incident solar
spectrum into two parts. These two parts are then distributed between the two chalcopyrite-based cells. The CGS
cell is illuminated by the short-wavelength (1 < As) part, and the CIGS by the long-wavelength (1 > As) part of the
spectrum. The role of the spectrum splitter here is similar to the role of the WSIR in the previous concept.

Since the parasitic sub-bandgap absorption in the CGS absorber does no longer affect the photocurrent generation
in the CIGS cell, the dcgs can be sufficiently thick, which results in a higher Jsc, cgs. On the other hand, the CIGS
bandgap and the spectrum split point g still need to be optimised in order to achieve good current matching and
high total conversion efficiencies (Eff = Effcgs + Effcigs). The optimisation results for different As and Eg, cigs are
plotted in Fig. 6. The results indicate that the carefully selected As is indeed crucial for a high Eff and should not
deviate from the optimal value (deviations should be less than 20 nm). The Eg, cigs, on the other hand, allows for
more freedom since similar results are rendered for CIGS bandgaps between 1.10 — 1.15 eV. The maximal
efficiency of 22.5 % can be achieved for Eg cigs = 1.10 eV and As = 710 nm, considering the realistic optical and
electrical parameters of the cells (see Table 1). For the case of the idealised CGS cell, on the other hand, the
maximal combined efficiency of 28.1 % was determined. Here, the enhancement is related to the improved electrical
parameters of CGS.
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Figure 6: The effects of the spectrum split point and the CIGS bandgap on the total conversion efficiency of the cells
connected in a hybrid four-terminal configuration.

4. Conclusions

The potential of three advanced optical concepts in the design of chalcopyrite-based solar cells was investigated
by means of numerical simulations. In the simulations, realistic optical and electrical parameters of the state-of-the-
art CGS and CIGS cells were assumed. The results show that the efficiency of the monolithically stacked
CGS/CIGS tandem is severely limited by the parasitic sub-bandgap absorption in the top CGS absorber, which calls
for a careful optimisation of the top CGS thickness and the bottom CIGS bandgap. In the optimal case, a conversion
efficiency of 20.3 % can be achieved, considering the realistic parameters. By means of the wavelength-selective
intermediate reflector inserted between the two cells of the tandem, however, the effects of the sub-bandgap
absorption can be reduced, and the Jsc generation in the CGS cell increased. Thus, a conversion efficiency of 20.8 %
can be achieved, while the CGS absorber thickness can be reduced substantially. Finally, the concept of spectrum
splitting was tested in a hybrid four-terminal configuration of dislocated CIGS and CGS cells. For the case of
optimal spectrum distribution, a conversion efficiency of 22.5 % can be achieved. However, to further boost the
efficiency of chalcopyrite-based cells, the electrical performance of the CIGS and especially the CGS absorber will
also need to be further enhanced. Thus, it could be possible to reach efficiencies up to 28 %.

References

[1] T. Dullweber et al., "Study of the effect of gallium grading in Cu(In,Ga)Se2", Thin Solid Films 361-362 (2000), pp. 478-481.

[2] T. J. Coutts et al., "Critical issues in the design of polycrystalline, thin-film tandem solar cells", Progress in Photovoltaics: Research and
Applications 11 (2003), pp. 359-375.

[3]1J. Kr¢, F. Smole, M. Topi¢, "Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model",
Progress in Photovoltaics: Research and Applications 11 (2003), pp. 15-26.

[4] M. Schimd, R. Klenk, M. Ch. Lux-Steiner, J. Kr¢, M. Topi¢, "Optical modeling of chalcopyrite-based tandems considering realistic layer
properties", Applied Physics Letters 94/5 (2009), pp. 1-3.

[5] D. L. Young et al., "Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells", Progress in Photovoltaics: Research and Applications
11 (2003), pp. 535-541.

[6] L. Repins et al., "19.9%-efficienct ZnO/CdS/CulnGaSe?2 solar cell with 81.2% fill factor", Progress in Photovoltaics: Research and
Applications 16 (2008), pp. 235-239.

[7]J. Kx¢, M. Zeman, S. L. Luxembourg, M. Topi¢, "Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells",
Applied Physics Letters 94/15 (2009), pp. 1-3.

[8] W. Chen, P. Gu, "Design of non-polarizing color splitting filters used for projection display system", Displays 26 (2005), pp. 65-70.



[9] M. Schmid, R. Klenk, M. Ch. Lux-Steiner, "Quantitative analysis of cell transparency and its implications for the design of chalcopyrite-
based tandems", Solar Energy Materials & Solar Cells 93 (2009), pp. 874-878.

[10] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, "Cu(Inl-1,Gax)Se2 thin film solar cells using transparent conducting oxide back contacts
for bifacial and tandem solar cells", Journal of Applied Physics 41 (2002), pp. 209-211.

[11] M. Gloeckler, J. R. Sites, "Efficiency limitations for wide-band-gap chalcopyrite solar cells", Thin Solid Films 480-481 (2005), pp. 241-245.

[12]J. AbuShama et al., "Improved performance in CulnSe2 and surface-modified CuGaSe2 solar cells", Conference paper of the 31st IEEE
Photovoltaics Specialists Conference and Exhibition (2005).



