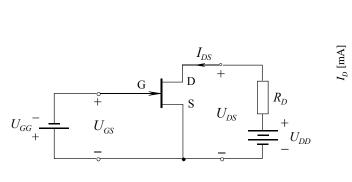
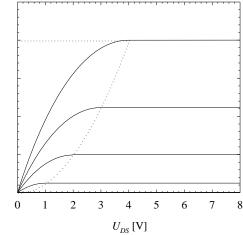

Written exam »Semiconductor Devices«

(30.8.2012)

- 1. Silicon p^+n -junction ($N_A >> N_D$) has breakdown voltage $U_{BR} = 250$ V, at forward bias voltage U = 0.6 V conducts I = 1 mA. Calculate concentration of doping in lower-doped layer and area of pn-junction. Other data: $\tau_p = 0.1$ µs in n-layer, $\mu_p = 400$ cm²/(Vs). Breakdown voltage occurs, when the electric field at the junction reaches 400 kV/cm. In calculation you can neglect the diffusion voltage U_D .
- 2. Calculate R in given circuit, so that $U_R = 50$ mV. Diodes are identical, DC source current is I = 10 mA.




3. Calculate short-circuit current amplification $\underline{A}_{iF}(\omega, \underline{U}_{ce} = 0)$ of bipolar transistorja in orientation CE for small signals with frequency $\omega = 10^6 \, \mathrm{rads}^{-1}$. Data: $\alpha_0 = 0.99$, $g_e = 25 \, \mathrm{mS}$, $C_{de} = 200 \, \mathrm{pF}$. Calculate also ω_T . $(g_m = \alpha_0 \, g_e)$

$$\underline{A}_{iF}(\omega)\Big|_{\underline{U}_{ce}=0}=-\frac{\underline{y}_{21}}{\underline{y}_{11}}$$

4. Channel of junction FET-a is doped with $N_D = 4 \times 10^{15}$ cm⁻³, channel thickness is D = 2,425 µm, diffussion voltage U_D at pn-junctions is 0,7 V, largest saturation current is $I_{DSS} = 4$ mA. Calcultae and draw in graph missing current I_D , voltages U_{GS} and U_{DSsat} . Draw also resistive load line determine the quiscent point. Other data: $U_{DD} = 8$ V, $U_{GG} = 1$ V and $R_D = 2$ k Ω .

Time limit: 60 minutes. One page with basic equations allowed.