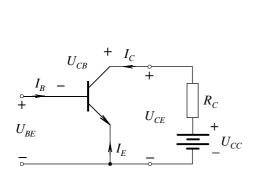
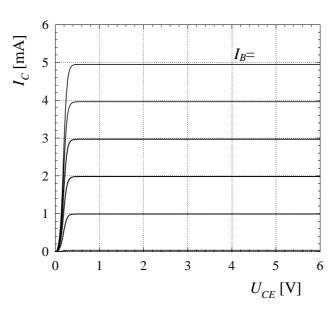
Written exam- UNOFFICIAL TRANSLATION

at courses


ELEKTRONSKI ELEMENTI


2. year - Electronics - VSP 6. 4. 2001

1. For non-linear duopoly we have analytical relationship: $i = a \cdot u + b \cdot u^2$. Determine the differential resistance at connected bias voltage U = 1 V.

$$a= 1 \text{ A/V}$$

 $b= 5 \text{ A/V}^2$

- 2. At T = 300 K we measure junction capacitance of silicon p^+n diode at two reverse voltages: $C_T(U_{RI} = 1 \text{ V}) = 7.0$ pF and $C_T(U_{RI} = 2 \text{ V}) = 5.8$ pF. Write analytical expression for $C_T(U_R)$ and determine the junction capacitance at the short-circuit and potency factor n, if the diode has step pn junction with $N_A = 10^{18}$ cm⁻³ in p-layer and $N_D = 10^{14}$ cm⁻³ in n-layer.
- 3. For depicted circuit specify the load resistance R_C so that at the bias base current of I_B =30 μ A the output voltage is U_{CE} =2 V. Draw operating line with the operating point in the attached output characteristic of a bipolar transistor and enter the values of base currents for each curve.

- 4. For a MOSFET with a built-in p-channel draw symbol, cross-section of the structure and a sketch of the family of output curves $i_D(u_{DS}, u_{GS})$. Draw the energy band diagram over the semiconductor
 - a) for the situation without the connected voltage and
 - b) for the conditions of reduced channel.